[ Pobierz całość w formacie PDF ]
(primitive) concepts satisfying certain relations or axioms. In fact, in 1966 Lawvere
outlined how category theory can replace set theory as a foundation for mathematics.
See [11] for details.
In the recent developments outlined in this section, we have seen the function concept
modified (L2 functions), generalized (distributions), and finally generalized out of
existence (category theory). Have we come full circle?
Acknowledgements. I am very grateful to my friend and colleague Abe Shenitzer for his
assistance in the preparation of this article. Thanks are also due to the Editor Warren Page
and V. Frederick Rickey for their valuable suggestions.
REFERENCES
1. G. Birkhoff, A Source Book in Classical Analysis, Harvard Univ. Press, 1973.
2. H. Bos, Mathematics and Rational Mechanics; In: Ferment of Knowledge (eds.
G.S. Rousseau & R. Porter), Cambridge Univ. Press, 1980, pp. 327 355.
3. U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from
Euler to Weierstrass, Springer-Verlag, 1986.
4. P. J. Davis & R. Hersh, The Mathematical Experience, Birkäuser, 1981.
5. P. Dugac, Des Fonctions Comme Expressions Analytiques aux Fonctions
Representables Analytiquement; In: Mathematical Perspectives (ed. J. Dauben),
Academic Press, 1981, pp. 13 36.
6. C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.
7. A. Gardiner, Infinite Processes, Springer-Verlag, 1982.
8. J. V. Grabiner, The Origins of Cauchy s Rigorous Calculus, M.I.T. Press, 1981.
9. I. Grattan-Guinness, The Development of the Foundations of Mathematical Analysis
from Euler to Riemann, M.I.T Press, 1970.
10. T. Hawkins, Lebesgue s Theory of Integration Its Origins and Development,
Chelsea, 1975 (orig. 1970).
11. H. Herrlich & G. E. Strecker, Category Theory, Allyn & Bacon, 1973.
12. R. F. Iacobacci, Augustin-Louis Cauchy and the Development of Mathematical
Analysis, Ph.D. Dissertation, New York Univ., 1965. (University Microfilms, no. 65-
7298, 1986.)
13. V. J. Katz, Calculus of the Trigonometric Functions, Hist. Math. 14 (1987)
311 314.
14. P. Kitcher, The Nature of Mathematical Knowledge, Oxford Univ. Press, 1983.
15. M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ.
Press, 1972.
19
16. R. E. Langer, Fourier Series: The Genesis and Evolution of a Theory, The First
Herbert Ellsworth Slaught Memorial Paper, Math. Assoc. of America, 1947. (Suppl.
to v. 54 of the Amer. Math. Monthly, pp. 1-86.)
17. J. Lützen, The Development of the Concept of Function from Euler to Dirichlet
(in Danish), Nordisk. Mat. Tidskr. 25/26 (1978) 5 32.
18. ______, Euler s Vision of a Generalized Partial Differential Calculus for a
Generalized Kind of Function, Math. Mag. 56 (1983) 299-306.
19. N. Luzin, Function (in Russian), The Great Soviet Encyclopedia, v. 59 (ca. 1940),
pp. 314-334.
20. A. F. Monna, The Concept of Function in the 19th and 20th Centuries, in Particular
with Regard to the Discussion Between Baire, Borel, and Lebesgue, Arch. Hist.
Ex. Sci. 9 (1972/73) 57 84.
21. G. H. Moore, Zermelo s Axiom of Choice: Its Origins, Development, and Influence,
Springer-Verlag, 1982.
22. J. R. Ravetz, Vibrating Strings and Arbitrary Functions; In: The Logic of Personal
Knowledge: Essays Presented to M. Polanyi on his Seventieth Birthday, The Free
Press, 1961, pp. 71-88.
23. D. Rüthing, Some Definitions of the Concept of Function from Joh. Bernoulli to
N. Bourbaki, Math. Intelligencer 6:4 (1984) 72 77.
24. W. L. Schaaf, Mathematics and World History, Math. Teacher 23 (1930) 496-503.
25. D. J. Struik, A Source Book in Mathematics, 1200 1800, Harvard Univ. Press, 1969.
26. F. Treves, Review of The Analysis of Linear Partial Differential Operators by
L. Hormander, Bull. Amer. Math. Soc. 10 (1984) 337 340.
27. A. P. Youschkevitch, The Concept of Function up to the Middle of the 19th
Century, Arch. Hist. Ex. Sci. 16 (1976) 37 85.
20
[ Pobierz całość w formacie PDF ]